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ABSTRACT 

We have expanded on the results of an earlier paper [J. 

Chern. Phys. ~' 221 (1980)] which deals with a method for 

determining the response of a static, partially ordered 

ensemble of molecules to various types of electromagnetic 

probes. In this paper we consider types of spectroscopy 

whose response depends on the location of two vectors in 

an axis system fixed with respect to the mo cule. Examples 

of such spectroscopies discussed in detail include fluorescence 

polarization, photoselection linear dichroism, Raman spectros­

copy and two-photon absorption. We outline the kinds of 

structural information available from polarization experiments 

on partially ordered ensembles. 
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I. Introduction 

Spectroscopic studies on oriented systems provide impor~ 

tant sources of structural information in chemical and bio~ 

logical systems. The problem that we undertake is how to 

extract structural information from an observed response 

in a partially ordered ensemble. In many cases, the 

molecules that comprise the ensemble are spectroscopically 

identical and non~interacting. The observed response is, 

therefore, a superposition of the responses for the indi~ 

vidual molecules. The superposition can be calculated by 

averaging a response function over an orientational distri­

bution function. In this paper, we will be concerned with 

only the static regions in which the molecular motion is 

negligible. The orientational averaging will then be done 

uslng a distribution function that is independent of time. 

In an earlier paper1 (hereafter referred to as paper I) 

we developed much of the theory involved in calculating 

spectroscopic properties of partially ordered ensembles, 

and we applied the theory to one~vector problems. One­

vector problems are spectroscopic calculations in which the 

response function depends on the orientation of only one 

vector in the molecular axis system- l.e., one that is 

d with respect to the molecule. An example of a one~ 

vector problem is electron paramagnetic resonance (EPR), 

where the signal depends only on the orientation of the 

Zeeman field in the molecular axis system. In one~vector 
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problems, the observed response can be written as 

'IT 2TI 
I = J de J d¢ nce,¢,~)I(B,¢) d8d¢ 

0 0 
(1) 

where I(8,¢) is the response when the vector of interest has 

spherical angles 8 and ¢ in the molecular axis system, 

D(8,¢,~) is the one-vector density of states function which 

gives the probability that the vector of interest has spherical 

angles 8 and ¢ in the molecular axis system, and ~ is a set of 

parameters that describe the partial ordering, The chief ad-

vantage afforded by the use of equation (1) in paper I lies in 

a formalism, developed earlier,
2 

for calculating one-vector 

density of states functions from arbitrary models of partially 

ordered ensembles. Paper I and reference 2 describe the 

details of how to calculate one-vector density of states 

functions. Frank et al. 
3 

and Nairn et al.
4 

have applied 

the one-vector density of states formalism to obtain structural 

information in photosynthetic systems from EPR 3 and linear 

d . h . 4 . lC rolsm experlments. 

The response functions for many spectroscopic properties 

are not adequately described by the location of one vector 

ln the molecular axis system, but depend on the location 

of two vectors in the molecular axis system. Examples of 

such spectroscopies are fluorescence polarization, photo-

selection linear dichroism, Raman spectroscopy and two photon 

absorption. Although the density of states approach was first 
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used for one-vector problems, it can be extended to include 

two-vector problems; this extension is advantageous because 

it retains many favorable aspects of the one-vector density 

' 1-4 of states technlques, 

We begin with two unit vectors v
1 

and v2 in the 

laboratory axis system which are perpendicular to each other 

and which define directions of interest, For example, ln a 

fluorescence polarization experiment, vl could be the 

polarization direction of the exciting light and v2 could be 

thepolarization direction of the detected fluorescence. We 

now introduce the two-vector density of states function 

P(8,¢,w,~) which gives the probability that the location 

of v2 in the molecular axis system is defined by w when the 

spherical anglesof v
1 

in the molecular axis system are e and 

¢ (see fig. 1), The observed response will then be 

2TI 

r = ! 
0 

2TI 

dw f 
0 

TI 

d¢ J de I(8,¢,w)P(8,¢,w,~) 
0 

(2) 

where I(8~¢,w) is the response when v1 and v2 are defined 

by 8,¢, and win the molecular axls system. As will be shown 

in the next section, P(8,¢,w,~) can be derived in a manner 

that is analogous to the derivation of D(8,¢,~) in reference 2. 

Evaluation of P(8,¢,w,~) and use of Eq. 2 is sufficient 

for analyzing any two~vector problem. We will consider 

several examples having the same type of response function, 
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I(6,¢,w) (3) 

where T is a constant tensor ln the molecular axis system. 

We define I 1 as the average of a response function like (3). 

Structural information lS obtained by comparing 11 to r
11 

where ~~ is the average of the response function 

2 I(6,¢) = (~ •T·~ ) 
1 "" 1 

(4) 

Because Eq. (4) is independent of w, calculation of I" is a 

one-vector problem, and it is evaluated using Eq. (1). 

Spectroscopies having these response functions include 

fluorescence polarization, photoselection linear dichroism, 

Raman spectroscopy, and two-photon absorption. 

II. Evaluation of P(w,S,¢,~) 

We follow the same procedure used in ref. 2, where we 

began with a set of n rotations R
1 

Ca
1

) 

weighting functions g1 Ca
1

) ... gn(an) that 

R (a ) and n n n 

generate the 

partially ordered ensemble. The partially ordered ensemble 

can be thought of as a set of cubes in which the unit vectors 

in the molecular axis system (x',9' ,z') lie along the joined 

edges of the cube. To generate an ensemble by a set of 

rotations, we begin by placing a cube at the origin of the 

laboratory axis system (with x', 9'' and z' coincident with 

the laboratory axis system unit vectors x, 9, and z). 
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in the laboratory frame, will become a member of the 

ensemble. Furthermore, the probability that the angular 

variables are a
1

, a
2 

weighting functions. 

a is given by the product of the 
n 

The average intensity for a two-vector problem can be 

written directly as an integral of the variables a
1 

X 

a 
n 

(5) 

where N is a normalization constant, I[Oi<a1 ... an),O~Ca1 ... an)] 

is the two-vector response function, and v' and v' are the l 2 

two vectors of interest in the molecular axis system. From 

ref. 2, the two vectors are 

0' 
1 

R (a )0
1 n n 

0' = R,(a
1

) ••• R {a)() 
2 -L _ n n n 

( 6) 

(7) 

where 0
1 

and 0
2 

are the two vectors in the laboratory ax1s 

system. 
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The two-vector density of states function P(6,¢,w,~) 

describes the probability that vi has spherical ang s 

e and ¢, and v 2 described by the angle w defined in 

fig. 1; in other words, the probability that 

vi = (cos~sin8,sin¢sine,cos8) (8) 

and 

coscpcos8cosw + sin¢sinw 

sin~cos8cosw coscjlsinw (9) 

-sinecosw 

We thus perform the transformation 

( 10) 

under the constraints 

v' = sine cos~ lx 

v' = sines in¢ ly 

v' :::: cose lz 
(11) 

v' :::: coscjlcosecosw + sin¢sine 2x 

v' = sinq>cosecosw - cos¢sinw 2y 

v' :::: -sin8cosw 2z 
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Application of the n dimensional change of variable theorem 

to equation (5) yields 

1 rr 2rr 2rr 
I =-I de I d¢ I dw I[0iC8,¢),~~(8,¢,w)] 

N 0 0 0 

n 
IT g.[a.(¢,v

1 
••• v 

3
,e,w)] 

:L l. n-i=l 

( 12) 

where (aa1 ... an/a¢,v 1 ... vn_ 3 ,e,w) is the Jacobian of the 

coordinate transformation. By inspection we set 

n 
IT g.[a.(¢,v

1 
••• v 

3
,e,w)] 

i=l 1 1 n-

(13) 

laboratory z axis to be the axis of the first rotation [R1 Ca1 )J, 

and ~ve use the following transformation 

a n-2 

a n-l 

= vn-3 

= f 2 Cv
1 

••• vn_ 3 ,e,w) 

an = f 3 ( v 
1 

••• v n _ 3 , e , w) 

( 14) 
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where a 1 and a are defined by solving the two equations n- n 

(15) 

(16) 

for a and a 1 and setting a
2 
... a 

2 
equal to v

1 
... v 

3
. 

n n- n- n-

As shown in ref. 2, under the above transformation 

al :::: -cj> + f
4

(v1 ... vn_
3

,e,w) (17) 

aal 
-1 (18) ~ 

:::: 

and 
aa. 

l. 
0 i .,. 1 (19) ~ 

:::: 

From equations (17), ( 18) ' and (19), the Jacobian simplifies 

to 

del n-1 del a a n-1 aeln 
Ill n 

(20) :::: ae aw ae w 

By differentiating both sides of Eq. (15) and Eq. (16) with 

respect to both 8 and w, we get four equations in the four 

unknowns aa 1 /38, aa /aw, aa 1 /aw, aa /36. Solving these n- n n- n 

equations for the Jacobian lds 

111 = 
• 2 e sJ.n 

aviz(a2 ... an) av~z(a2 ... an) 

aan-1 aan 

aviz<a2 ... an) 

a an 

(21) 

) I 
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with a 2 ... an replaced by their transformed variables v
1 
... vn~ 3 , 

f 2 <v 1 ... vn~ 3 ,e,w), and f 3 Cv1 ... vn~ 3 ,e,w). Substitution into 

equation (13) yields 

. 2 e , 
Sln SlnW 

:;: 

N 

(22) 

Equation (22) is the two~vector density of states 

function, and it is an extension of equation (31) in ref. 2 

for the one-vector density of states function. We note that 

if g1 <a1 ) = 1, we have an axially symmetric distribution; 

i.e. P(e,¢,w,~) is independent of ¢. If we have a randomly 

oriented system, can be shown that P(e,¢,w,~) = constant 

x sine. 

When the partially ordered ensemble can be generated 

with three rotations, there is no need for the dummy variables 

v
1 
... vn_ 3 in Eq. (14), and hence Eq. (22) will not involve 

any integration. In such a case, Eq. (22) can be shown to 

simplify to 

where G(a
1

,a
2

,a3) 1s the product of the weighting functions 
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for the three rotations. The two~vector density of states is 

thus determined by finding the functional form of a1 (9,~,w), 

a2 (8,w), and a 3(e,w). These functional forms for all 

possible three~rotationschemes and combinations of vl and 

v2 are listed in table I. We do not include a1 (e,~,w), 
and therefore table I is restricted to axially symmetric 

two-vector densities of states. 

In the remainder of this paper, we will not be con-

cerned with the speci c form of P(e,~,w,~), but instead -
will consider the type of structural information available 

in two-vector spectroscopy. 

III. A Particular Response Function 

We will now calculate r 11 and I 1 when the response 

functions are given by Eq. (4) and Eq. (3), respectively. 

We will restrict our consideration to the case where 

P(8,w,~) is axially symmetric; that is, the case where the 

two-vector density of states function is independent of~. 

The restriction to axial symmetry is not so limiting as 

it might seem, because the density of states is axially 

symmetric in some systems even when the distribution function 

in the laboratory reference frame is not axially symmetric. 4 

For Ill , we have a one-vector problem; application of 

equation (1) yields 

(24) 
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where D(8,6) is the one-vector density of states function 

for ~l' ~i is given by equation (8), and 

T T T 
XX xy xz 

T = T T T (25) 
:::; yx YY yz 

T T T 
zx zy zz 

is a constant tensor in the molecular axis system. 

Experimentally, partial ordering is induced by exerting 

some type of force on the system, such as an external 

alignment field or a mechanical stretch. Because the sign 

of the direction of these forces is arbitrary, D(8) is 

1s symmetric about '!T/2; that is, D(8) :i D('!T-8). Utilizing 

this symmetry property, expanding equation (24) and 

evaluating the integral over ~ results in 

where 

and D(8) 

I = l{aT2 + a[8T T + 4(T +T ) 2 + 8(T T ) 
8 ZZ XX ZZ XZ ZX yy ZZ 

+ 4(T +T ) 2 - 16T 2J + S[3T2 
yz zy zz xx 

+ 3T2 + 2T T 
yy XX YY 

+ (T +T ) 2 - 8T T - 4(T +T ) 2 - 8T T 
xy yx xx zz xz zx yy zz 

- 4(T +T ) 2 + 8T2 ]} 
yz zy zz 

'IT/2 
sin2e D(8) a = ! dB 

0 

'!T/2 
. 4e s = ! s1n D(8) d8 

0 

1S normalized such that 

'IT/2 
! D(S) dS = 1 
0 

(26) 

(27) 

(28) 

(29) 
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For Il ' we require the use of P(8 ,w,L';); the result is 

if 2n 21r 
P(a.i-uL}~) cv;e!·v~) 

2 r :: f de f d<i> f dw (30) 
0 0 0 

P(8,w,~) is the two-vector density of states for ~l 

and~~ where ~land~~ are given by Eq. (8) and Eq. (9), 

respectively, and Tis given by Eq. (25). Expanding equation 

(30) and evaluating the integral over ~ yields 

(T +T ) 2 
xy yx 

+ (Txx-Tyy)2] + y[4(Txx-Tzz)2 + 4(Tyy-Tzz)2 

- 2(T -T ) 2 + 2(T +T ) 2 - 4(2T T + 2T T xx yy xy yx xz zx yz zy 

+ T2 )] + ~[4(T +T ) 2 + yz xz zx 

4 ( T +T ) 2 - ( T +T ) + yz zy xy yx (T -T ) 2 
XX YY 

2 2 - 4(T -T ) - 4(T -T ) ]} 
XX ZZ yy ZZ 

where a is, as before, 

n/2 'IT/2 
' 2 2 ·y :: J de J dw s1.n acos w 

0 0 

n/2 'IT/2 ' 4 2 t; :: J de J dw s1.n ecos w 
0 0 

and P(S,w,~) is normalized such that 

n/2 
J 
0 

d6 
n/2 

J 
0 

dw P(8,w,L'i) = 1 -

P(e,w,~) 

P(a,w,L'i) 

(31) 

( 32) 

(33) 

(34) 
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Eqs. (26) and (31) are valid for any partially ordered 

system in which the density of states functions are axially 

symmetric. We will now consider some special cases. In a 

random ensemble D(8) = sine) and P(e,w) = ~sine; the 
7f 

2 8 1 4 
parameters a,S,y, and ~become 3 , IS' 3 , and IS' respectively. 

Substitution into equations (26) and (31) yields 

and 

where 

and 

~I = !_[B2 + 
1 15 

4B2 + 3(T +T ) 2 + 3(T +T ) 2 
xz zx yz zy 

- (T T + T T + T T )] 
xy yx xz zx yz zy 

A = !(T + T + T ) 
3 XX yy ZZ 

(35) 

( 36) 

(37) 

![(T -T ) 2 + (T -T ) 2 + (T -T ) 2J (38) 
2 XX yy yy ZZ XX ZZ 

We will return to the signi cance of these equations in 

the next section. 

One type of axially symmetric, perfectly ordered system 

lS one where the z axis of each of the molecular axis 

systems is coincident with the z axis of the laboratory 

s system, and all orientations that are rotations 

about the z axis are equally likely. If spectroscopic 
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measurements are made with v1 along the z axis, then D(8) 

= ~(6) and P(S,w) = ~ o(S), which means a=S=y=~=O. Eqs. 
1T 

(28) and (38) lead to the expected results 

ru :;; T2 
zz ( 39) 

and 

rl ::: t_(T2 + T2 ) 
2 :xz yz (40) 

I d ( A A)2 - o n other wor s Iu lS equal to . z·T·z and r1 lS equal to the 

average of (x•T•2) 2 and (y•T•z) 2 • 
~ ::::: 

IV Examples 

A. Fluorescence Polarization 

Fluorescence polarization experiments are typically done 

with the configuration shown in Fig. 2; a sample is excited 

with light polarized in the z direction and propagating along 

they axis and fluorescence is detected along the x axis, with 

an analyzing polarizer oriented either along the z axis (F ) or zz 

they axis (F ). We let D(8) be the one-vector density of zy 

states for a unit vector along the laboratory z axis, and 

P(8,w) be the two-vector density of states for two unit 

vectors along the laboratory z axis and the laboratory x 

axls. Then 

and 

F = zy 

(41) 

(42) 
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In the dipole approximation, the response function for 

fluorescence polarization in a static noninteracting ensemble 

of molecules is 

I(e ~ ) = K2(n ·A')2(n ·A')2 
''~''w "'1 vl "'2 v2 (43) 

where 0
1 

is a unit vector along the absorption dipole moment, 

02 is a unit vector along the emission dipole moment, Oi is 

the polarization direction of the exciting 
light, 02 is the polarization direction of the detected 

fluoresce~ce, and K2 is a constant. Eq. (43) is identical to 

Eq. (4) when T is given by the dyad 
:::: 

x2 xlx2 ylx2 zlx2 

T ::: K)12:)11 ::: K y2 (xl Y1 zl) = xly2 yly2 zly2 :;:: 

z2 xlz2 ylz2 zlz2 
(44) 

After incorporation of the elements of! into Eq's (26) and 

(31) and some rearrangement, we arrive at 

and 

F zz. 

F zy 
2 2cos e: 

(46) 
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where E is the angle between 0
1 

and 0
2

• The constant K can 

be eliminated by calculating the fluorescence polarization, 

defined as 

(47) 

2 We are left with the three parameters: 1) z1,the angle between 

the absorption dipole moment and the z axis of the molecular 

axis system; 2) z~, the angle between the fluorescence dipole 

moment and the z axis of the molecular axis system; 3) E, 

which is the angle between 01 and 02 . These are the structural 

parameters that can, in principle, be determined by fluorescence 

polarization on a partially ordered system. 

In the past, most fluorescence polarization experiments 

have been done on random samples. In such samples, Eqs. 

(45) - (47) reduce to 

p : 3cos
2

E - 1 
cos 2

E + 3 
(48) 

Only one structural parameter is obtainable from a random 

sample experiment, while three structural parameters are 

obtainable from an ordered sample experiment. At first 

glance, it appears that it would be hopeless to try to 

extract three numbers from the one measured quantity in 

Eq. (47). We note, however, that in an ordered system, the 

2 direction and the x direction will not be equivalent (un-

less the y axis is an axis of symmetry in the laboratory 

axis system), which means that new information can be obtained 

by exciting with light polarized along the ~ axis and measuring 
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Fxz and Fxy (see Fig. 3). In a partially ordered sample 

F ~ F ~ F ~ F we, thus, have four measured quantities, zz zy xz xy 

or three polarization ratios, as handles on the three struc-

tural parameters. This fact contrasts with the random 

solution where F # F = F = F and there are only two zz zy xz xy 

measured quantities, or one polarization ratio as a handle to 

the one structural parameter. 

B. Photoselection Linear Dichroism. 

In a photoselection linear dichroism experiment, one 

excites a sample with polarized light and probes an induced 

absorption change with light polarized either parallel or 

perpendicular to the exciting light.
5 

The response function 

is 

(49) 

where 0
1 

is the absorption dipole moment that is being 

excited by light polarized along Oi and 02 is the absorption 

dipole moment that is being probed by light polarized along 

02. Because Eq. (49) is identical with the response function 

for fluorescence polarization, everything that applies to 

fluorescence polarization also applies to photoselection 

linear dichroism. 
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C. Raman Spectroscopy 

Polarization experiments in Raman spectroscopy are done 

by exciting along the y axis with light polarized along the 

z or x axes and detecting scattered intensity along the 

x axis with an analyzing polarizer oriented along the z or 

y axes. Analogously to fluorescence polarization experiments, 

one can measure four quantities,! , I , I , and Ixy zz zy xz 

Depolarization ratios for a Raman band are derivable from 

these four quantities. 

The intensity scattered in the x direction is glven by 6 

(w -
I ::: 

4 
c 

(50) 

where w and w0 are the scattered and incident frequencies, 

c is the speed of light, r
0 

is the incident intensity, 

~i and ~2 are the polarization directions for the incident 

and scattered light and T is the scattering tensor. The 

elements of the scattering tensor for a transition from vibronic 

state m to vibronic state n are 

T., 
lJ 

(M.) (M.) 
l mr J rn] 
w + wo rn 

(51) 

where i and j can be x, y, or z; 2nh is Planck's constant and 

the sum is over vibronic states of the molecule. Here, 

(M.) , (M.) , etc., refer to the components of the tran-
l rn J mr 

sition moments between vibronic levels and w and w are 
rm rn 
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frequencies obtained from the energy differences of the 

vibronic states. 7 The four quantities I I I and I zz' zy' xz' xy 

can be found (with T .. 's as 
lJ 

parameters) by use of Eq. (26) 

or Eq. ( 31) • For example, I :::: Ill when D(8) lS the one~ 
zz 

vector density of states for a unit vector along the z axis, 

I :::: 
xz when D(8) is the one-vector density of states for a 

unit vector along the x ax:ts and P(8,w) is the two-vector 

density of states for a unit vector along the x ax:ts, and 

a unit vector along the z axis, and similarly for I and 
zy 

I In this section, we will consider only symmetric 
xy 

scattering tensors; it is then possible to find an axis system, 

the principal axis system, where a is diagonal with diagonal 
,.mn 

elements a , a and a • 
X y Z 

Now, Eq. (26) and Eq. (31) were 

derived by orientation averaging :tn a molecular axis system 

which in general is not the same as the principal axis system. 

Tnis approach is necessary because, even though the density of 

states is axially symmetric in some molecular ax:ts system, it 

2 
may not be axially symmetric in the principal s system. 

We can find I in the molecular axis system by 

OL 0 0 
X 

T R(G,<P,If) 0 0 
~1 

(52) :::: a R (0,¢,'¥) 
:::; :::: y ~ 

0 0 a 
z 

or 

T .. :::: r Rik(0,<P,If)Rjk(0,¢,1f)ak (53) 
lJ k 
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where k = x,y, and z, and R(0,~,~) is the Euler rotation 

matrix with Euler angles 0,~, and ~. 8 Because both the princi-

pal axis system and the molecular axis system are fixed with 

respect to the molecule, 0,~, and ~are constants that are 

the same for every member of the ensemble. We now see that 

there are six parameters inherent in a Raman experiment; those 

six are the three principal components of the scattering 

tensor and the three Euler angles that relate the principal 

axis system to the molecular axis system. 

In a partially ordered sample, one can measure the four 

quantities I , I , I~z' and I from which can be constructed zz zy ~ xy 

three depolarization ratios. These three ratios are all that 

is available to extract the six structural parameters mentioned 

above. Although the ratio of parameters to data points is 

unfavorable, in some cases a few of the parameters may be 

known. For example if the three Euler angles are known.from 

other experiments, one would have three measured quantities 

to determine the three principal components of the scattering 

tensor and vice versa. 

In a random sample Izz = 111 1n Eq. (35) and Izy = Ixz 

= I = ! 1 in Eq. (36), which results in only one possible xy 

depolarization ratio. The depolarization ratio is frequently 

reported as 

I + I xz xy 
p = ~I~~+-=I~ 

zz zy 
(54) 
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which, for symmetric tensors is equal to 

p ::: (55) 

A is equal to 1/3 times the trace of T; because the trace 

is invariant to rotation, A is also equal to j<ax + ay + az), 

This quantity is known as the spherical part of the polarizi-

bili ty' 6 In a similar fashion, the quantity c2 ::: B2 + 

3 ( T2 + T2 
xy xz 

rotations. 

(a -a ) 2 + 
y z 

anisotropy 

+ T
2 

) can be shown to be also invariant to 
yz 

I h . . 1 . c2 1 [ < ) 2 . n t e pr~nc~pa ax~s system ::: 2 ay-ax + 

(a -a ) 2 ]; this quantity is known as the 
Z X 

of the polarizability. 6 Eq. (55) reduces to the 

classical result for the depolarization ratio 

(56) 

Most Raman depolarization measurements have been done on 

random samples, but for two reasons it worth undertaking 

depolarization measurements on ordered samples: l) It is 

not possible to obtain structural information (e.g, the Euler 

angles in Eqs, (51) - (52) through measurements on a random 

sample; 2) If the Euler angles in Eqs. (51) - (52) are known, 

depolarization measurements on a random sample yield only one 

ratio involving ax' a , and a , while depolarization measure-
y z 

ments on an ordered sample yields three ratios. 
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D. Two~Photon Absorption 

Simultaneous absorption of two different photons is 

governed by the formula9 

(57) 

where a is the fine structure constant, w1 and w2 are the 

frequencies of the two photons whose polarizations are vl 

and v2' g(w) is the absorption lineshape function for the 

molecule, and S is the two photon absorption tensor. The 
:::mn 

elements of S are 
:::mn 

(S .. ) =I[ 
l.J mn k 

(58) 

McClain and Harris 9 have reviewed the theory of two~ 

photon absorption in random systems. The parameters that 

enter are the elements of the absorption tensor. They used 

group theoretical arguments to list the irreducible tensor 

patterns of many types of molecules; these tensors contain 

from one to nine different elements. In a partially ordered 

sample, the elements of the irreducible absorption tensor 

will s ll be parameters, and three new parameters will be the 

three Euler angles that relate the molecular axis system to 

the principal axis system of the irreducible absorption 

tensor. Conceptually, the type of information available 1.n a 

two~photon absorption experiment is similar to that available 

in a Raman experiment. 
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V. Discussion 

The chief result of this paper is the derivation of 

P(8,<t>,w,L1) in equation (22)~ This result is an extension of 

the density of states theory introduced in reference 2. 

The two-vector density of states theory retains most of the 

advantages of the one-vector density of states theory, and 

these advantages are discussed at length in Paper I. Here, 

we will outline the major benefits afforded by adopting our 

approach to analyzing the results of spectroscopies governed 

by the response functions 1n Eqs. (3) and (4). 

Previous approaches to orientation averaging have intro-

duced a distribution function P 1 (8 1 ,<!>',~')which gives the 

pr1obabili ty that a member of the ensemble is related to the 

laboratory axis system by the Euler angles 8' ,<!>', and~~. 

This stribution function is then expanded in terms of the 

Wigner rotation matrix elements
9

'
10 

P v$1, c e ' ,/; ' 1/1 ' ) 
Jl,mn mn ''~' '"' 

(59) 

th wr1ere P Jl,mn are the 9,mn moments of the distribution function 

defined by 

1 2 'IT 

J J v!n ( e ' ' <P ' ' t/J ' ) P ' < e ' ' <I> ' ' t/J ' ) 
-1 0 

(60) 
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When Equation (59) is substituted into orientational averaging 

formulas with the response functions in Eqs. (3) and (4), the 

results are expressions that depend only on the t = 2 and 

t = 4 moments, and the structural parameters inherent ln 

the type of spectroscopy analyzed (e.g. for fluorescence 

polarization, the expressions depend on the t = 2 and t = 4 

moments, z
1

, z
2 

and e). 

There are two basic problems with the Wigner expansion 

approach: 

(1) If one knows the spectroscopically inherent structural 

parameters, it is possible to probe the distribution function 

with an experiment on a partially ordered sample. In the 

Wigner expansion approach, this experiment can yield -only 

the t = 2 and t = 4 moments, and these moments may be of 

little value in describing the distribution function, 

especially if the expansion in equation (59) is slowly con-

vergent. The best one can do is to construct a model for the 

system, calculate P 1 
( e '·) <1> 

1
, \jJ 1

), and see if calculated moments 

from Eq. (60) agree with the measured moments. However, no 

general method for constructing P'(8 1 ,<t>' ,ijJ') from a model 

that involves a rotation scheme of four or more rotations 

has been described. 
(2) If one wishes to measure the spectroscopically inherent 

structural parameters, it is necessary to know the t = 2 

and t = 4 moments, or at least to be able to place limits 

on the moments. Because P 0 are merely mathematical x,mn 

projections of the unknown distribution function on the Wigner 
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rotation matrix elements, there 1s no justification for 

placing limits on the moments. 

The density of states approach overcomes these problems. 

One way to think of the difference between our approach and 

the Wigner expansion approach is that we represent the 

distribution function in terms of the order parameter ~ 

instead of the Ptmn moments. The major benefits afforded by 

adopting our approach are: 

(1) If one uses known spectroscopically inherent structural 

parameters to probe the distribution function, one may 

obtain 6. The 6 parameter gives a better definition of the 

distribution function. In fact, one could find all the Pimn 

moments from 6 by an equation 

p n :::; f f f VQ, ( e I <P I 1J; I ) F ( e I <P I 1J; I 6 ) de I d <P I d 1J; I ( 61) 
)\, mn mn ' ' ' ' ' -

where F(e' ,¢' ,lj;' ,~) is a distribution function which could 

be derived from P(8,¢,1j;,6) by converting from the molecular 

s system to the laboratory axis system. Furthermore, 

ea /J., l.S related to some physical property of the ensemble 
1 

and, such, quantity of interest. 1 
as 18 a 

( 2) If one t..:rishes to measure the spectroscopically inherent 

stn1ctural parameters, it is necessary to place limits on 6. 

This is easier than placing limits on the moments, because 6 

may often be restricted from physical considerations. 

(3) P(8,¢,w,~) is evaluated from a model for the system which 

is defined by the rotations R
1

Ca
1

) ... Rn(an) and the weighting 

functions g
1

(a,) ... g (a), As such, it is straightforward to 
.1. n n 

interpret data in light of a specific model. 
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(4) The fact that we average orientations in a molecular 

axis system, instead of a laboratory axis system, sometimes 

makes our approach more efficient, For example, reference 4 

gives an example of a system where the distribution function 

is axially symmetric in the molecular axis system but not in 

the laboratory axis system. 

Most experimental work involving two-vector problems has 

been done on random systems. Work on partially ordered systems 

has either resorted to the cumbersome expansion methodll~l 3 

or been analyzed only ' ' 1 14 qualltatlve y. As a result, 

experimental studies of two~vector spectroscopies on partially 

ordered systems is probably an underexplored area. It can 

serve as a valuable probe to structural features such as the 

orientation of transition moments in the molecular axis 

system and the principal axis system. In closing, we note 

that two-vector spectroscopies having response functions other 

than Eqs. (3) and (4) can still be analyzed by our approach, 

with Eq. (2) serving as a starting point for such an analysis. 
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FIGURE CAPTIONS 

l. Definition of the angles e, ¢,and win the molecular 

axis system. e and ¢ are the traditional spherical angles for 

the vector ~i; 8 lS the polar angle and¢ is the azimuthal 

angle, w is the angle between ~2 and an arbitrary (but 

fixed) vector in the plane perpendicular to ~i· 

2. Experimental set-up for a polarization experiment with 

exciting light polarized along the z ax1s. The axis system 

shown is the laboratory axis system. 

3. Experimental set-up for a polarization experiment with 

exciting light polarized along the x axls. The axis system 

shown is the laboratory axis system. 
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TABLE LEGEND 

1. The functional forms of a 2 Ce,w) and a 3 Ce,w) in Eq. (23). 

When a± appears in an equation for a
2

Ce,w)_ or a
3

Ce,w), both 
terms must 
be included; i.e. P(8,w) = sin8{G[a;(e,w),a~(8,w)] + G[a

2
(e,w), 

a;<e,w)]} 



'rABLE I 

(8 w) e,w) 
b 

( 8 ,w) 
c 

-1 
• • • ) cos ) 

-l 
ZYZ ,0, J (0,1,0) cos (cos8 ) 

_, 
'IT 

sin ~(sin8cosw/sina2 J 2-w 

ZYZ (O,coslj!, J (1,0,0) cos-
1

(cos8sin1j!±cosljlsin8sinwJ 
-l 

) cos ( w 

ZYZ (0,0,1) (coslj!, ,OJ 8 </! ± (JJ </! ± w 

zyz (0,1,0) '0. 
-1! . 8 . ) cos \s:tn s:tn sin 

-1 
) ) ) 

,,, -1 ( . 8 . 0, COS1f1 1 ) COS Sl.n S:tn ) ) 
-1 d 

cos (cos8/sina
2

J I 0 ZYZ (1,0,0) 

(0,0 1) sin-
1

(cos8sin1j!±cos1j!sin8sinw) 
-1 

cos ~(sin8cosw/cosa2 J l w 
) 

(coslj!, ,0) ZXY 

ZXY , 0, simj!) 0,1,0) . -1 ( . 8 Sl.n Sl.n COSW) 

sin-
1

(sin8cosw/cosa
2

J 
'lT 
2-w ZXY I (O,coslj!,sinlj!) (1 0, 0) sin-1 (cos8cosljJ±sinlj!sin8sinw) 

-1 d 
cos (cos8/cosa

2
J 0 

'IT 'lT 
2- 1/1 ± w -- 1jJ ± w 

2 
-1 

sin (cos8/cosS 

ZXY I (0,0,1) I (COSV,J, • 0) sin 
-l 

sin ) ) 

ZXY (0,1,0) I (cos\jl, 0, ) .:!_- 8 
2 

ZXY I (l 0,0) I (O,cos1f; . -l ( . 8 ) s:tn s:tn cos j 
aRotation scheme or the order and axes of three rotations to generate the ensemble. 

bUse these formulas if the denominators are not to zero. 

cuse these formulas if the denominators in the previous column equal zero. 

these cases, any value of a
3 

can be used because for any realizable model, G 

will be of a
3 

when the denominators in the colw~i zero. 
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